
Distributed OS Concepts

Adapted from
Operating System Concepts tenth edition

Abraham Silberschatz
Peter Baer Galvin

Greg Gagne



Operating System

• What is a distributed system?

• Why would you want one?



• A network comprises the 
hardware and software that 
provides two or more 
computers with the ability to 
communicate with each other

• Provided that one computer is 
listening, another computer can 
establish a connection

• Both computers can then send
and receive data over the 
connection
– The data may be characters or 

binary data (bytes)



• Protocol layering is a common 
technique to simplify network 
designs by dividing them into 
functional layers
– For example, it is common to separate 

the functions of data delivery and 
connection management into separate 
layers

– Each layer has its own protocol(s)

• Each layer performs a specific 
purpose, and doesn’t need to know 
about the other layers or how to 
perform their purposes

• There are two major layered 
protocol designs in use today.
– The DoD 4-Layer model
– The OSI 7-Layer model





• TCP/IP is the most widely used 
communications protocol on the 
internet

• It is actually two protocols working 
together
– The Internet Protocol (IP) runs in the 

network layer and handles routing and 
relaying packets of information

– The Transmission Control Protocol
(TCP) establishes connections between 
two computers and helps to ensure 
that packets are delivered in order, 
reliably, and without corruption

• Most of what we will be talking 
about today will be how to send 
and receive data between two 
processes (on the same or different 
computers) using TCP/IP



• The IP address is ultimately used to 
send and receive data to and from a 
computer

• But it is often the case that a 
computer is identified by its human 
readable hostname rather than its 
machine address
– This is particularly the case when the 

network uses the dynamic host control 
protocol (DHCP), and a computer’s 
address may change at any time

• A domain name server (DNS) on the 
network provides a service that 
maps a hostname to real address 
for the computer

• A hostname is used to look up the 
address before trying to 
communicate



Network Operating System

• Remote Login
– ssh nitron.se.rit.edu

• Remote File Transfer
– Each machine maintains its own files that can be transferred to other 

machines
– ftp nitron.se.rit.edu
– sftp nitron.se.rit.edu

• Cloud Storage
– Examples: Dropbox, Google Drive
– Requires the user to interact with files through a different paradigm 

than OS managed files



Distributed Operating System

• Distributed operating systems are designed to allow remote 
work to look the same as local work

• Data Migration
– Non-local information is copied (in at least part) to the local system 

automatically

• Computation Migration
– Executes functions remotely
– Often done to be closer to resources needed
– Could use RPC (remote procedure calls) or similar technology

• RMI – Java
• CORBA
• Older systems that is less commonly used now

– Could send messages to other machine which starts a new process
• Web services
• More common now



Process Migration

• Rather than offloading a single function to another machine, 
it is possible to run an entire process on one, or more, 
networked machines in a distributed operating system

• Reasons for this include
– Load balancing: Keep nodes in a system evenly loaded
– Computation speedup: Concurrency across nodes
– Hardware preference: Specialized hardware on other nodes
– Software preference: Specialized software on other nodes
– Data access: Large amounts of data stored on another node, it can be 

cheaper to run the process co-located with the data



Robustness

• A distributed system has more points of failure than a single 
machine

• It is important if one component fails, it does not bring down 
the entire system, i.e. it is Fault Tolerant

• Fault tolerance can take many forms
• Failure Detection

– Can I still talk to other components

• Reconfiguration
– Once detected, make accommodations to prevent trying to use 

unavailable nodes

• Recover from Failure
– Once the failed node is fixed, it needs to be added back into the 

system so it can be used again



Transparency

• Ideally, a distributed system should look the same as a 
conventional system

• Users should be able to access remote resources the same as 
local ones

• The users environment should be the same regardless of 
where they access the system
– Home screen
– Bookmarks
– Available apps
– Etc.



Salability

• Scalability involves increasing resources and the workload 
increases

• In a conventional system, this might be done by adding more 
resource
– This is a manual physical process
– Eventually you run into physical limitations

• In a networked distributed system, ideally it would be a 
simple task of adding new machines to the network

• While there is decreased efficiency due to networking delays, 
the ability to silently add more resources allows a system to 
scale much more uniformly



Question

• Based on the topics we discussed, is your operating system a 
distributed system?

• If yes, why?

• If no, does it have aspects of a distributed system and what 
are they?



Distributed File Systems

• Distributed file systems are a popular use of distributed 
computing.

• A file system provides file services to clients, which are 
ultimately maintained by some server
– Same machine for local systems
– One or more remote machines for distributed systems

• In a distributed system, files may reside across many 
machines

• The major performance aspect of a DFS is the amount of time 
to access storage

• Two standard models are used to accomplish this:
– Client-Server Model
– Cluster-Based DFS Model



The Client-Sever DFS Model

• Server stores both files and metadata of attached storage
• Clients request access to files using a well-known protocol
• Network File System (NFS):

– Focus is simple and fast crash recovery
– Server is stateless
– Same operation can be issues repeatedly, with gives the same result 

(idempotent)

• Andrew File System (OpenAFS)
– Focus on scalability
– Requested files are stashed locally on the client
– Updated to the server when they are closed
– Much less communication than NFS

• Susceptible to single point of failure (Server)
– Can be reduced/eliminated via computer clustering



The Cluster-Based DFS Model

• Cluster-based DFS is designed to increase fault-tolerance and 
scalability

• Google File System (GFS) is one example
– Information is stored in redundant chunks across multiple servers
– Metadata server lets client know where the chunks for the requested 

files are located
• After that point, the client is responsible for collecting the needed 

information on the local system

– Influenced by four main observations
• Hardware failures are common and should be expected
• Files stored on the system may be very large
• Most files append rather than overwrite data
• Redesigning the file system API increases flexibility

– Requires applications to use the specified API



DFS Naming and Transparency

• Naming is the mapping between logical and physical objects
• In DFS systems, naming may include mapping to different 

machines or even redundant copies across multiple systems
• Naming Structures

– Location Transparency: The name of the file does not reveal the 
physical storage

– Location Independence: The filename need not change when the 
physical storage changes

• Naming Schemes
– Unique identifier (URL is an example)
– Attach remote directories to local (NFS)
– Single global name structure for the entire system (OpenAFS)



Remote File Access

• On common way to transfer remote files is through a remote-
service mechanism
– Uses an RPC paradigm

• To ensure reasonable performance some type of caching 
scheme is needed

• In local systems cache is used to reduce disk I/O
• In distributed systems, it is used to reduce disk I/O and 

network traffic
• There are several aspects we need to consider

– Caching Scheme
– Cache Location
– Cache Update Policy
– Consistency



Basic Caching Scheme

• Simple concept, if the data is not already stored locally, then 
copy it from the server into a cache

• Access to data is always through the cached version
• When something changes the server needs to be updated

– Cache-Consistency Problem

• Data can be cached in portions (blocks) of a file or the entire 
file
– When using blocks, extra data is often collected to reduce subsequent 

server requests

• Block size and cache size are related
– Larger blocks reduce the need for subsequent reads
– However, fewer blocks increases the likelihood of a cache miss
– Thus larger blocks benefit from a larger cache



Cache Location

• Where should the cached memory be stored?
• Disk

– Increased reliability
– Crash recovery may not require communication with the server
– Slower

• Main Memory
– Workstation can be diskless
– Increased performance
– Volatile memory is decreasing in cost relative to disk cost
– Server caches will be in memory, thus allowing local and server to use 

the same mechanism

• NFS uses memory caching only
• OpenAFS uses both memory and disk



Cache Update Policy

• When to update the server copy can greatly impact system 
performance

• Write-through policy
– Write as soon as a change happens
– High reliability, low write performance

• Delayed-write policy (write-back caching)
– Make changes locally (in the cache)
– Occasionally write the cached changes

• When the element is about to be cleared from the cache
• At some interval (NFS)

• Write-on-close policy
– Write when the local file is closed
– Greatly increased performance for files that are kept open for a while
– Used by OpenAFS



Consistency
• Client machines must determine if the local copy is still up to 

date with the server
• If not, a new copy must be added to the cache
• There are two common approaches to this determination:
• Client-initiated approach – the client checks validity

– Every access
– First access only
– Some interval

• Server-initiated approach – the server tracks which clients 
have cached a file
– If two, or more clients, cache the same location in conflicting modes 

the server disables caching
– This results in a remote-service mode of operation

• DFS systems can greatly increase the complexity of 
maintaining consistency with the addition of meta-server and 
redundant chunks.


