Distributed OS Concepts

Adapted from
Operating System Concepts tenth edition
Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Operating System

* What is a distributed system?

* Why would you want one?

) * A network comprises the
Networklng hardware and software that
provides two or more
computers with the ability to
communicate with each other

* Provided that one computer is
listening, another computer can
establish a connection

 Both computers can then send
and receive data over the
connection

— The data may be characters or
binary data (bytes)

Protocol layering is a common
technique to simplify network
designs by dividing them into
functional layers

— For example, it is common to separate
the functions of data delivery and
connection management into separate
layers

— Each layer has its own protocol(s)

Each layer performs a specific
purpose, and doesn’t need to know
about the other layers or how to
perform their purposes

There are two major layered
protocol designs in use today.
— The DoD 4-Layer model
— The OSI 7-Layer model

Protocol Layers

Application
Presentation
Session
Transport
Network
Data Link

Network Access

Network Models at a Glance

Application
Application Presentation Application
Session
Transport Transport TCP UDP
Internet Network IP
Data Link
Network Access Fthernet TokenRing | Frame Relay ATM

Physical

The Department of Defense | | The Open Systems TCP/IP s the main communications

(DoD) 4-Layer model. Also Interconnection (OSI) protocol used by the internet. It runs in the

called the TCP/IP Model 7-Laver Model. Transport and Network layers.

* TCP/IP is the most widely used
TCP/IP communications protocol on the
internet

* Itis actually two protocols working
together

— The Internet Protocol (IP) runs in the
network layer and handles routing and
relaying packets of information

— The Transmission Control Protocol
(TCP) establishes connections between
two computers and helps to ensure
that packets are delivered in order,
reliably, and without corruption

* Most of what we will be talking
about today will be how to send

and receive data between two

processes (on the same or different

computers) using TCP/IP

Sl
o
S

* The IP address is ultimately used to
send and receive data to and from a

computer Hostnames & DNS

e Butitis often the case that a
computer is identified by its human
readable hostname rather than its
machine address

— This is particularly the case when the
network uses the dynamic host control
protocol (DHCP), and a computer’s ol ol Sl
address may change at any time

i e Second Level
Uaimiain
A domain name server (DNS) on the
network provides a service that B o
maps a hostname to real address o S

for the computer

* A hostname is used to look up the
address before trying to

] DNSs on the internet are arranged into a
communicate hierarchy, with the root servers at the top
and individual machines at the bottom.

Network Operating System

* Remote Login

— ssh nitron.se.rit.edu

e Remote File Transfer

— Each machine maintains its own files that can be transferred to other
machines

— ftp nitron.se.rit.edu
— sftp nitron.se.rit.edu

* Cloud Storage

— Examples: Dropbox, Google Drive

— Requires the user to interact with files through a different paradigm
than OS managed files

Distributed Operating System

Distributed operating systems are designed to allow remote
work to look the same as local work

Data Migration
— Non-local information is copied (in at least part) to the local system
automatically
Computation Migration
— Executes functions remotely
— Often done to be closer to resources needed
— Could use RPC (remote procedure calls) or similar technology
* RMI—Java

« CORBA
* Older systems that is less commonly used now

— Could send messages to other machine which starts a new process
* Web services
* More common now

Process Migration

Rather than offloading a single function to another machine,
it is possible to run an entire process on one, or more,
networked machines in a distributed operating system

Reasons for this include

— Load balancing: Keep nodes in a system evenly loaded

— Computation speedup: Concurrency across nodes

— Hardware preference: Specialized hardware on other nodes
— Software preference: Specialized software on other nodes

— Data access: Large amounts of data stored on another node, it can be
cheaper to run the process co-located with the data

Robustness

A distributed system has more points of failure than a single
machine

It is important if one component fails, it does not bring down
the entire system, i.e. it is Fault Tolerant

Fault tolerance can take many forms
Failure Detection

— Can | still talk to other components
Reconfiguration

— Once detected, make accommodations to prevent trying to use
unavailable nodes

Recover from Failure

— Once the failed node is fixed, it needs to be added back into the
system so it can be used again

Transparency

Ideally, a distributed system should look the same as a
conventional system

Users should be able to access remote resources the same as
local ones

The users environment should be the same regardless of
where they access the system

— Home screen

— Bookmarks

— Available apps

— Etc.

Salability

Scalability involves increasing resources and the workload
Increases

In a conventional system, this might be done by adding more
resource

— This is a manual physical process

— Eventually you run into physical limitations

In a networked distributed system, ideally it would be a
simple task of adding new machines to the network

While there is decreased efficiency due to networking delays,
the ability to silently add more resources allows a system to
scale much more uniformly

Question

Based on the topics we discussed, is your operating system a
distributed system?

If yes, why?

If no, does it have aspects of a distributed system and what
are they?

Distributed File Systems

Distributed file systems are a popular use of distributed
computing.

A file system provides file services to clients, which are
ultimately maintained by some server

— Same machine for local systems
— One or more remote machines for distributed systems

In a distributed system, files may reside across many
machines

The major performance aspect of a DFS is the amount of time
to access storage
Two standard models are used to accomplish this:

— Client-Server Model
— Cluster-Based DFS Model

The Client-Sever DFS Model

Server stores both files and metadata of attached storage
Clients request access to files using a well-known protocol
Network File System (NFS):

— Focus is simple and fast crash recovery
— Server is stateless

— Same operation can be issues repeatedly, with gives the same result
(idempotent)

Andrew File System (OpenAFS)
— Focus on scalability
— Requested files are stashed locally on the client
— Updated to the server when they are closed
— Much less communication than NFS

Susceptible to single point of failure (Server)
— Can be reduced/eliminated via computer clustering

The Cluster-Based DFS Model

* Cluster-based DFS is designed to increase fault-tolerance and
scalability

* Google File System (GFS) is one example
— Information is stored in redundant chunks across multiple servers

— Metadata server lets client know where the chunks for the requested
files are located

* After that point, the client is responsible for collecting the needed
information on the local system

— Influenced by four main observations
e Hardware failures are common and should be expected
* Files stored on the system may be very large
* Most files append rather than overwrite data
* Redesigning the file system APl increases flexibility

— Requires applications to use the specified API

DFS Naming and Transparency

Naming is the mapping between logical and physical objects

In DFS systems, naming may include mapping to different
machines or even redundant copies across multiple systems

Naming Structures

— Location Transparency: The name of the file does not reveal the
physical storage

— Location Independence: The filename need not change when the
physical storage changes

Naming Schemes

— Unique identifier (URL is an example)

— Attach remote directories to local (NFS)

— Single global name structure for the entire system (OpenAFS)

Remote File Access

On common way to transfer remote files is through a remote-
service mechanism

— Uses an RPC paradigm

To ensure reasonable performance some type of caching
scheme is heeded

In local systems cache is used to reduce disk I/O

In distributed systems, it is used to reduce disk I/O and
network traffic

There are several aspects we need to consider
— Caching Scheme
— Cache Location
— Cache Update Policy
— Consistency

Basic Caching Scheme

Simple concept, if the data is not already stored locally, then
copy it from the server into a cache

Access to data is always through the cached version
When something changes the server needs to be updated

— Cache-Consistency Problem

Data can be cached in portions (blocks) of a file or the entire
file
— When using blocks, extra data is often collected to reduce subsequent
server requests

Block size and cache size are related

— Larger blocks reduce the need for subsequent reads

— However, fewer blocks increases the likelihood of a cache miss
— Thus larger blocks benefit from a larger cache

Cache Location

Where should the cached memory be stored?
Disk
— Increased reliability

— Crash recovery may not require communication with the server
— Slower

Main Memory

— Workstation can be diskless

— Increased performance

— Volatile memory is decreasing in cost relative to disk cost

— Server caches will be in memory, thus allowing local and server to use
the same mechanism

NFS uses memory caching only
OpenAFS uses both memory and disk

Cache Update Policy

When to update the server copy can greatly impact system
performance

Write-through policy
— Write as soon as a change happens

— High reliability, low write performance

Delayed-write policy (write-back caching)
— Make changes locally (in the cache)
— Occasionally write the cached changes

* When the element is about to be cleared from the cache
* At some interval (NFS)

Write-on-close policy
— Write when the local file is closed

— Greatly increased performance for files that are kept open for a while
— Used by OpenAFS

Consistency

Client machines must determine if the local copy is still up to
date with the server

If not, a new copy must be added to the cache
There are two common approaches to this determination:

Client-initiated approach — the client checks validity
— Every access

— First access only

— Some interval

Server-initiated approach — the server tracks which clients
have cached a file

— |If two, or more clients, cache the same location in conflicting modes
the server disables caching

— This results in a remote-service mode of operation

DFS systems can greatly increase the complexity of
maintaining consistency with the addition of meta-server and
redundant chunks.

